Sharath Gore

Chemistry mock test 4 2022-23

Time: 60 Min Chem: Full Portion Paper Marks: 200

Hints and Solutions

51) Ans: **B)** CH₃CH₂OH

Sol: CH₃CH₂OH

52) Ans: **C)** CH₃COO⁻

Sol: Since, it is conjugate base of weak acid

i.e. $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$

53) Ans: **C)** $Na_2S_2O_3 + Na_2S$

Sol: $3S + 4NaOH \xrightarrow{\text{boiling}} Na_2S_2O_3 + Na_2S$

54) Ans: **D)** PbO₂

Sol: PbO₂ i.e. lead dioxide is not a peroxide. All other are peroxides because they have (-O - O-)linkage.

55) Ans: **D)** - 17 kcal

Sol:
$$C_{(s)} + 2H_{2(g)} \rightarrow CH_{4(g)}$$
(i)

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}; \Delta H = -94 \ kcal \ mol^{-1} \qquad \qquad(ii)$$

$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(l)}; \Delta H = -68 \text{ kcal mol}^{-1} \dots (iii)$$

$$CH_4 + 3/_2 O_2 \rightarrow CO_2 + 2H_2O;$$

$$\Delta H = -213 \text{ kcal mol}^{-1} \qquad \dots \text{(iv)}$$

To obtain equation (i) calculate -(ii) + 2 × (iii) - (iv).

56) Ans: **B)** CH₃CHCl₂

Sol:

$$\text{CH} \equiv \text{CH} + \text{HCl} \rightarrow \text{CH}_2 = \text{CHCl} \xrightarrow{\text{HCl}} \text{CH}_3 - \text{CHCl}_2$$

57) Ans: **A)** $k[Au(CN)_2]$

Sol: For gold plating, the used electrolyte which is used is $K[Au(CN)_2]$.

58) Ans: C) This Statement 1 is true, but the Statement 2 is false

Sol: Mohr's salt contains only Fe²⁺ ions without any of Fe³⁺ ions. Thus, a standard solution of Fe²⁺ can be obtained directly by weighing a known amount of the Mohr's salt.

59) Ans: **A)** Neutron/proton ratio

Sol: Radioactivity is due to n/p ratio.

60) Ans: **B)** double dumb-bell.

61) Ans: **C)** 4,5-dimethyl-2-hexyne

Sol:
$$CH_3 - CH_3$$

 $CH_3 - CH - CH - CH - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3$

62) Ans: **B)** guanine.

Sol: It is guanine containing two possible binding site.

63) Ans: **A)** 44800 ml

Sol: Here, n of
$$O_2 = \frac{16}{32} = \frac{1}{2}$$
 and n of $H_2 = \frac{3}{2}$

$$\therefore$$
 Total no. of moles = $\frac{3}{2} + \frac{1}{2} = 2$

$$\therefore V = \frac{nRT}{P} = \frac{2 \times .082 \times 273}{1} = 44.8 \text{ lit} = 44800 \text{ ml}$$

64) Ans: **A)** MgSO₄

Sol: Because MgSO₄ dissociates to give 2 ions.

65) Ans: **A)** hydrogen bonds.

Sol: α -helix structure is formed, when the chain of α-amino acid coil, as a right handed screw due to the formation of hydrogen bonds between amide groups of the same peptide chain means NH group in one unit, is linked to carbonyl oxygen of the third unit by hydrogen bonding. This H-bonding is responsible for holding helix in a position.

66) Ans: **C)** square planar.

Sol: The copper complexes usually involve with four co-ordination number and possess square planar in shape.

67) Ans: **A)** BaCrO₄

Sol: When barium ion is added in chromate ion solution, yellow ppt of BaCrO₄ is obtained.

$$\text{BaCl}_2 + \text{K}_2\text{CrO}_4 \rightarrow \text{BaCrO}_4 \downarrow + 2\text{KCl}$$

$$\text{Yellow ppt.}$$

68) Ans: D) all of these

69) Ans: A) changes.

70) Ans: **C)** $O_2^+ > O_2 > O_2^-$

Sol: The correct sequence of bond order is

$$O_2^+ > O_2^- > O_2^{2-}$$

71) Ans: **A)** combustion zone

Combustion zone	1800 K
Fusion zone	1600 K
Slage zone	1300 K
Treduction zone	800 K

72) Ans: **A)** intermolecular hydrogen bond. Sol: Intermolecular hydrogen bonding causes dimerisation of carboxylic acid in non-aqueous solvents.

73) Ans: **B)** 4

Sol: In Na_2O , each oxide ions (O^{2-}) is co-ordinated to $8 Na^+$ ions while each Na^+ ion to 4 oxide ions. Thus, it has 4:8 co-ordination.

74) Ans: **D)** There is no difference between order and molecularity of a reaction. Sol: Order may or may not be equal to molecularity.

75) Ans: **D)** both (1) and (2).

76) Ans: **A)** PO_4^{--} and $C_2O_4^{--}$ Sol: Here, both possess the tendency to accept proton

77) Ans: **D)** Na₃AlF₆ and CaF₂ Sol: Na₃AlF₆ and CaF₂

78) Ans: **B)** larger size of phosphorus atom. Sol: Pentavalency in phosphorus is more stable that of nitrogen because of large size of phosphorus atom.

79) Ans: **B)** 1, 2-dibromoethane

Sol:
$$Pb(C_2H_5)_4 \xrightarrow{heat} Pb + 4CH_3CH_2$$

Ethyl radical

$$CH_2 - CH_2 + Pb \longrightarrow CH_2 = CH_2 + PbBr_2$$

| Ethene Lead bromide

Br Br

When leaded gasoline burns, lead metal gets deposited in the engine which is removed by adding ethylene dibromide. The lead bromide is volatile and is carried off with the exhaust gases from the engine.

80) Ans: **A)** Hydrogen bonding

81) Ans: **C)** e/m ratio of protons is not constant. Sol: For protons, e/m is constant.

82) Ans: **C)** 224 ml

Sol: As we know,

$$2 \text{H}_2 \text{O}_2 \longrightarrow 2 \text{H}_2 \text{O} + \text{O}_2$$

$$2 \times 34 \text{ gm} \qquad 22400 \text{ ml}$$

As, $2 \times 34 \text{ gm} = 68 \text{ gm}$ of H_2O_2 liberates 22400 ml O_2 at STP,

 \therefore 0.68 gm of H_2O_2 liberates

$$=\frac{0.68\times22400}{68}=224 \text{ ml}$$

83) Ans: **D)** $\Delta G^{o} = -nFE_{cell}^{o}$

Sol: $\Delta G^{\circ} = -2.303 \, RT \log K_{eq}$ i.e. $\Delta G^{\circ} = -nFE_{cell}^{\circ}$.

84) Ans: **C)** 125 ml

Sol: Here,
$$M = \frac{n}{V(l)} \Rightarrow 0.8 = \frac{0.1}{V(l)}$$
 $\therefore V = 125 \text{ ml}$

85) Ans: **A)** Excess NO_2 and SO_2 from burning fossil fuels

Sol: Excess of SO_2 and NO_2 reacts with water to form H_2SO_3 (sulphonic acid) and HNO_3 (nitric acid) respectively that cause decrease is pH of water.

86) Ans: **D)** Statement 1 is false but statement 2 is true.

Sol: Both fumaric and maleic acids contain two ionisable H^+ i.e. protons. The maleate monoanion shows intramolecular H-bonding and hence requires more energy to give maleate dianion. It is therefore second dissociation of fumaric acid is more than maleic acid, as former does not show intramolecular H-bonding.

87) Ans: **A)** α -hydroxy ketone. Sol: α -hydroxy ketone.

88) Ans: A) - 602 kJ/molSol: Molecular weight of $NH_4NO_3 = 80$ and Heat evolved = 1.23×6.12 \therefore Molar heat capacity = $1.23 \times 6.12 \times C$

89) Ans: **C)** autocatalysis Sol: In autocatalysis, the rate of reaction increases with time as one of the product acts as catalyst.

90) Ans: **A)** phthalic anhydride and resorcinol. Sol: Fluorescein is prepared by the reaction of phthalic anhydride and resorcinol.

91) Ans: **A)** metallic iron is reduced to Fe^{2-} ions. Sol: As $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$

92) Ans: **A)** ethanal.

93) Ans: **D)** MW/6

Sol

$$\underbrace{ \begin{array}{c} \text{K}_2\text{Cr}_2\text{O}_7 + 4\text{H}_2\text{SO}_4 \rightarrow \text{K}_2\text{SO}_4 + \text{Cr}_2(\text{SO}_4)_3 \\ +6/2 \text{ atom} \\ \end{array} + 4\text{H}_2\text{O} + 3[\text{O}]}_{+6/2 \text{ atom}}$$

Thus, Eq. wt.=
$$\frac{\text{Mol. wt.}}{6}$$

94) Ans: B) NaCl solution in water.

Sol:
$$2\text{NaCl} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{Cl}_2 + \text{H}_2$$
 (anode) (cathode

95) Ans: **D)** MgCO₃

Sol:
$$MgCO_3 \xrightarrow{Heat} MgO + CO_2$$

The metal whose oxide is stable, then it's carbonate is unstable.

96) Ans: D) potash alum

Sol: Potash alum i.e. $K_2SO_4.Al_2(SO_4)_3.24H_2O$

97) Ans: A) benzyl alcohol

$$\begin{array}{c|c} & CH_3CHO \xrightarrow{\quad NaOH/I_2 \quad} CHI_3 \\ Sol: & CH_3CH_2OH \xrightarrow{\quad NaOH/I_2 \quad} CHI_3 \\ & CH_3 - C \quad H - CH_3 \xrightarrow{\quad NaOH/I_2 \quad} CHI_3 \\ & OH \end{array} \right\} Yellow ppt.$$

98) Ans: **B)** raising temperature.

Sol: Rate of forward reaction can be increased by raising temperature in endothermic reaction.

99) Ans: B) NaNO₂ / HCl followed by KI.

Sol:

$$\begin{array}{c}
NO_2 \\
NaNO_2 \\
HCl, 0-5^{\circ}C
\end{array}$$

$$\begin{array}{c}
NO_2 \\
Kl \\
N_2^{+}Cl^{-} \\
I$$

p-nitroaniline

100) Ans: **C)**
$$CO < CO_2 < CO_3^2$$

Sol: $CO \Rightarrow : \bar{C} \equiv 0^+ : \leftarrow$

$$CO_3^{2-} \Rightarrow \bigcup_{O^- O^- O^- O^-}^{O^-} \bigcup_{O^- O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O^- O^-}^{O^-} \bigcup_{O^-}^{O^-} \bigcup_{O$$

$$CO_2 \Rightarrow : O = C = O : \longleftrightarrow : \overset{+}{O} \equiv C - \overset{-}{O} : \overset{+}{C} = \overset{+}{C} = \overset{+}{C} = \overset{+}{C} : \overset{+}{C} : \overset{+}{C} = \overset{+}{C} : \overset{+}{$$

More single bond character in resonance hybrid, more is the bond length. Hence, the increasing bond length is